

Transport durch eine Diode mit eingebetteten Quantenpunkten (CV) &

Bistabilität und Hysterese in Quantenpunktstrukturen

<u>A. Rack</u>, R. Wetzler, A. Wacker, E. Schöll Institut für Theoretische Physik, TU Berlin J. Ehehalt, C.M.A. Kapteyn, R.Heitz, D. Bimberg Institut für Festkörperphysik, TU Berlin S. Schulz, W. Hansen Institut für Angewandte Physik, Universität Hamburg

http://wwwnlds.physik.tu-berlin.de/~rack

CV & Bistabilität

- Zielsetzungen
- Grundlagen des Modells

CV-Spektroskopie:

- Motivation
- Experiment
- Theorie
- Numerisches Verfahren
- Ergebnisse
 - InAs QD in pnin-Diode
 - InAs QD in Schottky-Diode

Bistabile Quantenpunktstrukturen:

- Motivation
- Experiment
- Theorie
- Bistabiles Verhalten
- Analyse der Dynamik

Zusammenfassung

Selbstorganisiertes Wachstum der Quantenpunkte im Stranski-Krastanow-Modus

Charakterisierung der Quantenpunkte

- Energieniveaus
- Verbreiterung
- Umgebungseinflüsse

Anwendungen

- Laser
- Detektoren
- Speicherelemente

Poisson-Gleichung

$$\boldsymbol{e}_0 \cdot \partial_z [\boldsymbol{e}(z) \cdot \partial_z \Phi(z)] = -\boldsymbol{r}(z)$$

 $\boldsymbol{r}(z) = \boldsymbol{e} \cdot [p^{3d} - n^{3d} + N_D^+ - N_A^- + p^{QD} - n^{QD} + p^{WL} - n^{WL} + \boldsymbol{s} \cdot \boldsymbol{d}]$

Experiment:

niederfrequente CV-Kennlinie von Quantenpunkt-Bauelementen

<u>Theorie</u>:

CV-Kennlinie aus stationärer selbstkonsistenter Lösung der Poisson-Gleichung

Vergleich Energieniveaus inhomogene Verbreiterung Einfluß von Wachstumsparametern Wechselwirkung Quantenpunkte mit Umgebung

Gauß'scher Satz:	$\frac{1}{\boldsymbol{e} \cdot \boldsymbol{e}_0} \cdot \boldsymbol{Q}$	=	$\int_V divE d^3r$
$\begin{array}{c c} 0 & z_c \\ \hline \text{Leiter 1} & \text{Leiter 2} \end{array}$		=	$A \cdot \int_0^{z_c} \partial_z E dz$
	→ Z	=	$A \cdot (E\big _{z_c} - E\big _0)$
Q_1 Q_2		=	$A \cdot \left \partial_z \Phi \right _{z}$
$ Q_1 = Q_2 = Q$			$\sim c$

$$\Leftrightarrow Q = \boldsymbol{e} \cdot \boldsymbol{e}_0 \cdot A \cdot \left| \partial_z \Phi \right|_{z_c} \Rightarrow C = \frac{dQ}{dV}$$

Struktur des Bauteils

- Schichtdicken
- Dotierungsdichten der Kontakte

Parameter

- . $E_{QD}^{1..N}$, $\Delta E_{QD}^{1..N}$
- $\bullet E_{WL}, \Delta E_{WL}$
- Dotierungsdichten
- verschiedene Wachstumseinflüsse
- Quantenpunktdichte

* Ostermeier, Gawelczyk, Hansen, TR-93-003, 1993

G. Yusa, H. Sakaki, APL 1997

G. Yusa, H. Sakaki , APL 1997

Poisson-Gleichung $\boldsymbol{e}_0 \cdot \partial_z [\boldsymbol{e}(z) \cdot \partial_z \Phi(z)] = -\boldsymbol{r}(z)$

$$\mathbf{r}(z) = e \cdot \left[N_D^+(z) - n^{3d}(z) - n_{QD}(z) \right]$$

Stromgleichung

$$0 \stackrel{!}{=} \partial_t n(z) = \frac{1}{e} \cdot \partial_z j(z) - f(n(z), n_{QD}(z, t))$$

Generations-Rekombinations-Ratengleichung (QD)

$$\partial_t n_{QD}(z,t) = f(n(z), n_{QD}(z,t))$$

Auger-Prozeß

Analyse der Dynamik

Hysterese durch Dynamik

Untersuche mögliche Einfangs- und Emissions-Prozesse

 ΔE

Unterschiedliche Ratengleichungen:

Auger
$$\partial_t n_{QD} = T_{Auger} n (n p_{QD} - n_1 n_{QD})$$

(bisheriges Modell)

Phonon
$$\partial_t n_{QD} = T_{Phonon} (np_{QD} - n_1 n_{QD})$$

(alternativ)

$$p_{QD} = \mathbf{a} N_{QD} - n_{QD} \qquad n_1 \coloneqq N_C e^{-k_B T}$$

$$T_{Auger} = 2 \cdot 10^{-20} \frac{m^4}{\text{sec}}$$
 A.V. Uskov et al., APL **72**, 1998

Alternative Erklärungsmöglichkeit? Theorie: R. Ferreira, G. Bastard, APL **74**,1999: $T_{Phonon} = 1 \cdot 10^{-2} \frac{m^2}{\text{sec}}$ (1-Phonon-Prozeß) Zur Erklärung der Bistabilität nötig: $T_{Phonon} \approx 10^{-11} \frac{m^2}{\text{sec}} \implies Multi-Phononen-Prozeß$

Auger-Prozeß liefert experimentell verträgliche Einfang-Raten bei hohen Dichten

- Bestimmung der Energieniveaus von Quantenpunkt-Zuständen und deren Verbreiterung
- Verschiedene Quantenpunkt-Strukturen: pnin-Diode und Schottky-Diode (Quantenpunkt-Elektronzustände)
- Modellierung eines bistabilen Quantenpunktbauteils
- Hysterese in Übereinstimmung mit Experiment
- Vergleich verschiedener Einfangs- und Emissionsprozesse
- Erklärung der Hysterese in der Kennlinie bei geringen Ladungsträgerdichten:

→ Auger-Prozeß (gute quantitative Übereinstimmung)