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Compared with crystal lattice reflection, the use of Bragg reflection on a 

multilayer mirror as a monochromator for hard X-rays has the advantage of a higher 

photon flux density because of the larger spectral bandpass. The main disadvantage lies 

in the strong modulations in the reflected beam profile, see Figure 1. This is a major 

issue for micro-imaging applications, where multilayer-based monochromators are 

frequently employed to deliver high photon flux density [1, 2, 3]. A subject of particular 

interest is the origin of the beam profile modifications, namely the irregular stripe 

patterns, induced by the reflection on a multilayer. For multilayer coatings in general it 

is known that the substrate and its surface quality significantly influence the 

performance of such kind of mirrors as the coating reproduces to a certain degree 

roughness and shape of the substrate. 

This presentation shall outline that the mid-spatial frequency roughness (MSFR), 

from 1 mm-1 to 1 µm-1 [5], of the multilayer substrate is of crucial importance for the 

beam profile modifications. A set of dedicated comparative experiments have been 

carried out, in which the influence of the finite X-ray source size, the surface profile as 



well as the surface roughness and the beamline geometry were studied. Hence, for the 

first time, a detailed description of the formation of the beam profile modifications can 

be introduced. Furthermore, different concepts for compensating the beam profile 

modifications will be discussed. 

 

Figure 1: Examples of stripe modulations in the flat-field image after reflection by multilayer mirrors of 

different materials, period d and number N of bi-layers, in use at different beamlines around the globe [1]. 

The sketches below show the essential layout elements of each beamline: source (WLS: wavelength 

shifter; W: wiggler; U: undulator; BM: bending magnet), monochromator (DMM: double multilayer 

monochromator; SMM: single multilayer monochromator), and the distances L and D between source, 

multilayer and experimental station (S: sample; D: detector). The sketches do not show filters, windows, 

etc. Left: W/Si, N = 150, d = 2.88 nm at the BAMline, BESSY-II. Center: Ru/B4C, N = 65, d = 3.92 nm, 

at ESRF beamline ID19. Right: W/B4C, N = 200, d = 1.38 nm, at APS beamline 2-BM.  
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